
Estimating Spatial Intensity and Variation in Risk

from Locations Coarsened by Incomplete Geocoding

Dale L. Zimmerman1

June 6, 2006

1Dale L. Zimmerman is Professor, Department of Statistics and Actuarial Science and Depart-

ment of Biostatistics, University of Iowa, Iowa City, IA 52242 (E-mail: dzimmer@stat.uiowa.edu;

Phone: 319-335-0818; Fax: 319-335-3017), and Affiliate of the Center for Health Policy and Re-

search, College of Public Health, University of Iowa. This research was supported by Cooperative

Agreement #S-3111 between the Centers for Disease Control and Prevention (CDC) and the As-

sociation of Schools of Public Health (ASPH); its contents are the responsibility of the author and

do not necessarily reflect the official views of the CDC or ASPH. Helpful discussions with Gerard

Rushton and Joseph Lang are gratefully acknowledged.



Abstract

The estimation of spatial intensity and relative risk are important inference problems in spa-

tial epidemiologic studies. A standard component of data assimilation in these studies is the

assignment of a geocode, i.e. point-level spatial coordinates, to the address of each subject in

the study population. Unfortunately, when geocoding is performed by the pervasive method

of street-segment matching to a georeferenced road file and subsequent interpolation, it is

rarely completely successful. Typically, 10% to 30% of the addresses in the study population

fail to geocode, potentially leading to a selection bias called geographic bias. Missing-data

methods might be considered for dealing with this; however, since there is almost always

some geographic information coarser than a point (e.g. a zip code) measured for the ob-

servations that fail to geocode, a coarsened-data analysis is more appropriate. This article

develops coarsened-data spatial epidemiologic methods for use with incompletely geocoded

data, which can reduce or even eliminate geographic bias. In particular, existing complete-

data methods for estimating intensity and variation in relative risk are modified so as to

exploit the coarsened data. Both nonparametric (kernel smoothing) and likelihood-based

estimation procedures are considered. The success of these procedures relies on modeling

and estimating a function called the geocoding propensity function, to which considerable

attention is given. Models based on the degree of rurality are featured, as it is well-known

that the propensity of rural addresses to geocode is much lower than for non-rural addresses.

Advantages of the coarsened-data analyses are demonstrated empirically.

Key words: Coarsened data, Geocoding, Geographic Bias, Missing data, Spatial epidemiol-

ogy.



1 Introduction

Public health researchers and the applied statisticians with whom they collaborate are in-

creasingly using geographic information systems (GIS) to explore relationships between ge-

ographic location and health. An important component of the data assimilation process for

many of these investigations is the accurate assignment of a geocode, i.e. a point-level loca-

tion, to every record in the dataset. In some instances, geocoding is performed by visiting

each address with a global positioning system (GPS) transmitter or by referencing a very

accurate (e.g. orthophoto-rectified) image map, but it is cheaper, more convenient and hence

much more common to obtain geocodes using widely available GIS software that matches

the address to a street segment georeferenced within a road database (e.g. a U.S. Census

Bureau TIGER file) and then interpolates the position of the address along that segment.

Successful geocoding of all records is important because inferences made using existing sta-

tistical methods for analyzing point-level geographic health data may be invalid if some data

are missing. Unfortunately, however, complete geocoding rarely occurs in practice. In fact,

it is common for 10%, 20%, or perhaps even 30% of the addresses to fail to geocode using

standard software and street files, and this proportion can be even higher for particular

subgroups or subregions of the region of interest. For example, Gregorio et al. (1999) and

Oliver et al. (2005) report on public health studies in which a geocode could not be assigned

to 14% and 26%, respectively, of the records in the dataset. Kravets and Hadden (2006)

present a study in which 89% of addresses geocoded overall, but of the addresses in counties

where fewer than 2500 people lived, only 44% geocoded.

Incomplete geocoding presents a specific type of missing-data problem to which a large

existing body of relevant methodology [summarized, e.g., by Little and Rubin (2002)] has

not yet been applied. A critical issue here, as in any missing-data problem, concerns the
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stochastic mechanism that causes some of the observations to be missing. Specifically, the

issue is whether the propensity of an observation to geocode is related to its location or the

locations of other observations. If there is no such relationship, then the missing geocodes

are said be missing completely at random, and the same statistical analysis that was con-

templated for the complete data will be valid (unbiased) for the incomplete data, i.e. the

data with the non-geocoded addresses excluded. Of course, because of the smaller sample

size of the incomplete data, parameter estimates will generally be more variable, and tests

of hypotheses will be less powerful, than they would be if the complete data were available.

If, on the other hand, there is a relationship between the locations of observations and

their propensities to geocode, then inferences made by applying standard complete-data

procedures to the incomplete data are susceptible to selection bias. I call the selection bias

in this context, following Oliver et al. (2005), geographic bias. As an illustrative example,

suppose that the rural addresses in a dataset were less likely to geocode than the urban

addresses; in fact, a burgeoning body of evidence indicates that this is commonly if not

universally true, due in large part to the greater use of rural routes and post office boxes

in rural areas (Vine, Degnan, and Hanchette, 1997; Cayo and Talbot, 2003; McElroy et al.,

2003; Ward et al., 2005; Kravets and Hadden, 2006). Then, if the prevalence of a disease

was higher among the rural population than among urban dwellers, the prevalence for the

entire population in the region of interest, estimated from only the observations that geocode,

would tend to be too small. Note that this bias would persist regardless of how large a sample

was taken. An example of geographic bias not necessarily related to rurality is provided by

Gilboa et al. (2006). They found, in a case-control study of air quality and birth defects in

Texas, that incomplete geocoding resulted in a significant underrepresentation of Hispanic

women in the study population, and that the association between maternal ethnicity and

risk of birth defects was somewhat different for the observations that geocoded than for the
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observations that failed to geocode.

Although an investigator’s first inclination for dealing with geographic bias might be to

take a missing-data approach, such an approach would probably be suboptimal because it

is unusual in epidemiological research for a record to possess no spatial information whatso-

ever. Virtually always, some geographic information is available for an address that fails to

geocode, albeit on a coarser, areal scale of measurement (e.g. a census blockgroup, zip code,

or county) rather than a point. Thus, rather than regarding the analysis of incompletely

geocoded data as a missing-data problem, it would typically be more appropriate to view it

as a coarsened-data problem, i.e. a problem in which each datum is not necessarily the true

value of the variable of interest, but rather is a subset of the sample space in which the true

datum lies (Heitjan and Rubin, 1991; Heitjan, 1993). Furthermore, in most applications the

missing geocodes are coarsened stochastically, in the sense that the investigator is unable to

predict perfectly in advance whether any particular address will geocode and thus whether

the locational information recorded for the address will be its precise coordinates (e.g. lati-

tude and longitude) or merely its coarse surrogate (e.g. zip code). Using the coarsened data

in an analysis offers the opportunity of substantially improving the quality of inferences

relative to what is possible using only the incomplete data. In particular, if the propensity

of an observation to geocode is location-dependent, but the dependence can be modeled or

otherwise accounted for using the coarsened data, it may be possible to reduce or eliminate

geographic bias.

The purpose of this article is to describe how the consulting statistician could incorporate

coarsened geographic information into some standard analytic methods for point-level data in

spatial epidemiology, so as to improve inferences when geocoding is incomplete. The analytic

methods considered are associated with the intensity function of a spatial point process or

the relative risk (essentially the ratio of intensity functions) for two independent processes.
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The intensity function describes how the expected number of “events” (e.g. incident disease

cases) per unit area varies across the spatial region of interest, hence estimates thereof are

commonly used for exploratory spatial analyses; for example, peaks and troughs in the

estimated intensity function can be compared with maps of covariates over the same region

to look for similarities in patterns. Furthermore, the estimated intensity associated with

incident disease cases is often compared to that associated with non-diseased individuals

(controls) over the same region to study how the risk of disease varies spatially.

The article is organized as follows. The next section reviews some standard nonparametric

(kernel-smoothing) and parametric (likelihood-based) methods for estimating intensity and

relative risk as they apply to completely geocoded data. Section 3 proposes modifications to

the intensity estimation methods for use with coarsened locations, and these modifications

are shown to reduce or eliminate geographic bias. Section 4 does likewise for the estimation

of spatial variation in relative risk. Section 5 is a brief discussion.

It is assumed throughout that the addresses that geocode are geocoded to a level of ac-

curacy sufficient for any errors to be negligible for purposes of intensity and relative risk

estimation. Depending on the scale at which spatial patterns or interactions manifest, this

assumption may sometimes be untenable, as several studies have demonstrated that geocod-

ing errors on the order of hundreds of meters are not uncommon when standard geocoding

software is used; see, for example, Dearwent, Jacobs, and Halbert (2001), Cayo and Talbot

(2003), Bonner et al. (2003), and Ward et al. (2005). Making valid inferences for spatial

point processes from observations that geocode completely but are subject to non-negligible

location errors is a problem requiring further research, though some work has been done on

certain aspects of it [e.g. Diggle (1993), Jacquez (1994), and Zimmerman and Sun (2006)].
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2 Estimation under Complete Geocoding

For a two-dimensional point process observed on a region of interest D, let N(B) represent

the number of events in an arbitrary region B ∈ D of area |B| and let s denote the bivariate

vector of spatial coordinates (e.g. latitude and longitude, or UTM coordinates) of an arbitrary

point in D. The intensity function, λ(s), of the process is defined as

λ(s) = lim
|b(s)|→0

(

E[N{b(s)}]

|b(s)|

)

(when the expectation exists), where b(s) is a circular region centered at s ∈ D. Let

s1, s2, . . . , sn represent the locations of the n events observed in D, all of which are assumed,

in this section, to have geocoded. By Tobler’s first law of geography, i.e. “nearby things tend

to be alike,” it is reasonable to assume that λ(s) varies smoothly across D. Consequently,

kernel smoothing has been the standard nonparametric method for estimating λ(·) ever since

it was introduced for this purpose by Diggle (1985). A variety of specific implementations of

kernel smoothing are possible, depending on the choice of the kernel function, bandwidth,

and edge correction; see Waller and Gotway (2004, section 5.2.5) and the references therein.

Although the choice of bandwidth and edge correction can strongly influence the estimated

intensity function (the choice of kernel function much less so), for our purposes these choices

are unimportant and it will suffice to consider a generic kernel intensity estimator

λ̂(s) =
n
∑

i=1

Kh(s − si) ≡
n
∑

i=1

h−1K(h−1‖s − si‖) (1)

where K(·) is a univariate symmetric kernel function and h is the bandwidth.

In some studies it may be of interest to model the intensity function parametrically

rather than nonparametrically, for example when one wants to investigate the possibility of

increasing intensity of incident disease cases with increasing proximity to a putative source

of environmental pollution (Diggle, 1990). For this analytic objective, attention is restricted

5



to (inhomogeneous) Poisson processes and maximum likelihood estimation. For a Poisson

process with intensity function belonging to a parametric family {λ(s; θ) : θ ∈ Θ}, the

likelihood function under complete geocoding is proportional to

L(θ; s1, . . . , sn) = exp
{

−
∫

D
λ(s; θ) ds

}

{

n
∏

i=1

λ(si; θ)

}

. (2)

A maximum likelihood estimate (MLE) of θ is a value θ̂ that maximizes L(·). In most

practical situations the integral in (2) cannot be evaluated explicitly and the likelihood

equations do not yield an explicit solution. Therefore, numerical techniques (e.g. numerical

integration and optimization algorithms) are generally needed to obtain a MLE.

In many epidemiologic applications there are two spatial point processes of interest rather

than one. For example, events may represent cases of two diseases, cases of a single disease

for males and females, or cases of a single disease and a random sample of controls from the

population at risk. Henceforth, terminology relevant to only the last of these three possibil-

ities is used, but much of the methodological development is relevant to the other two also.

Let s11, s12, . . . , s1n1
denote the case locations and s01, s02, . . . , s0n0

denote the control loca-

tions. The intensities λ1(·) and λ0(·) corresponding to cases and controls may be estimated

from these locations by kernel-based estimators λ̂1(·) and λ̂0(·); however, of greater interest

typically is the estimation of spatial variation in the function ρ(s) = log{λ1(s)/λ0(s)}, the

logarithm of the relative risk of observing a case rather than a control at s. (It is assumed

that both intensities and their kernel-based estimates are positive for all s ∈ D.) A natural

nonparametric estimator of ρ(s) is ρ̂(s) = log{λ̂1(s)/λ̂0(s)}, as proposed by Kelsall and Dig-

gle (1995). Spatial variation in relative risk can be investigated informally by examining ρ̂(·)

for local peaks and troughs, and Kelsall and Diggle also propose a test of clustering based

on the integral of a squared, centered version of ρ̂(·) over D.

A more formal method for risk surface estimation is the conditional likelihood approach
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of Diggle and Rowlingson (1994), which is now summarized. Assume that the two processes

are independent Poisson, in which case their superposition is also Poisson with intensity

λ0(s) + λ1(s). In this superposition, define a binary random variable Yi to take the value

1 or 0 according to whether si, the ith event in the superposition, is a case or a control.

Then, conditional on the observed superposition (in which events are not distinguished by

whether they are cases or controls), the Yi are mutually independent and p(si) ≡ P (Yi =

1) = λ1(si)/{λ0(si) + λ1(si)} for i = 1, . . . , n1 + n0. Assume that the intensities are related

multiplicatively, i.e. that

λ1(s) = αλ0(s)ξ(s; θ) for all s ∈ D, (3)

where α is a nuisance parameter relating to the numbers of cases and controls (the latter

being under the control of the investigator) and ξ(s; θ) is a parametrically specified relative

risk function. Then p(si; θ) = αξ(si; θ)/{1 + αξ(si; θ)} and thus the conditional likelihood

function associated with the Yi, given the superposition, is proportional to

L∗(α, θ; Y1, . . . , Yn1+n0
) =

n1
∏

i=1

p(si; θ)
n1+n0
∏

i=n1+1

{1−p(si; θ)} =
n1
∏

i=1

{αξ(si; θ)}

/

n1+n0
∏

i=1

{1 + αξ(si; θ)}

(4)

where, without loss of generality, events are labeled such that the first n1 are cases. Maxi-

mization of L∗(α, θ) yields the conditional MLE of θ.

Even when geocoding is complete, λ̂(s) is a biased estimator of λ(s), with bias depending

on such things as the bandwidths and the second-order derivatives of the intensity at s in

the two coordinate directions (Scott, 1992). However, λ̂(s) is unbiased asymptotically, in the

sense that its expectation tends to λ(s) as the sample size n increases and as the bandwidth

shrinks at a certain rate dependent on n. It follows that ρ̂(s) is asymptotically ratio-unbiased

when the same conditions apply to both cases and controls. Similarly, in the parametric case

the MLE of θ is generally biased (for both intensity estimation and risk estimation) but it is
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asymptotically unbiased (under suitable regularity conditions) when geocoding is complete.

3 Intensity Estimation from Coarsened Locations

Henceforth suppose that the geocoding may be incomplete, in which case the analytic meth-

ods reviewed in the previous section are susceptible to geographic bias. In this section I

describe how the coarsened data might be exploited to improve the estimation of the in-

tensity function. For specificity and without loss of generality, the coarsened data locations

(areal units) are taken to be zip codes unless noted otherwise. The zip code in which si lies

is denoted by Zi; note that the Zi are not necessarily all distinct.

It is helpful to introduce some additional notation. For each s ∈ D, define a geocoding

indicator random variable

G(s) =











1, if an event at site s geocodes

0, otherwise.
(5)

Also define a function φ(s), which I call the geocoding propensity function, as follows: φ(s) =

P{G(s) = 1}. Assume that φ(s) > 0 for all s ∈ D. Note that if φ(s) is equal to 1.0 across the

entire study region, then geocoding is complete and there is no geographic bias; if φ(s) varies

across the study region, then geocoding tends to be incomplete and λ̂(s) is geographically

biased. Observe also that if φ(s) is less than 1.0 but constant across the study region, then

geocoding tends to be incomplete and λ̂(s) is biased, but the bias is not geographic because

the intensity estimate is affected equally over the entire study region.

Let gi be the observed value of G(si) for i = 1, . . . , n and define G = {i : gi = 1}. In the

terminology associated with spatial point processes, the events that geocode, i.e. {si : i ∈ G},

constitute a realization of a “thinned” point process, or more specifically an independently

φ(s)-thinned process (Stoyan, Kendall, and Mecke, 1987, pp. 132-136). Some results relating
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characteristics of a thinned process to its corresponding pre-thinned process are known and

can be exploited here; in particular, letting λT (s) denote the intensity function for the thinned

process associated with the incompletely geocoded data, we have that

λT (s) = φ(s)λ(s). (6)

Furthermore, if the pre-thinned process is Poisson then so is the thinned process.

3.1 Nonparametric estimation

Equation (6) suggests a direct analogy with the so-called “weighted distributions,” which

are univariate distributions with densities proportional to w(s)f(s), where f(·) is a density

on the positive half-line and w(·) is a weighting function that accounts for sampling bias

(Patil and Rao, 1978). Jones (1991) considers two kernel density estimators for weighted

distributions whose analogues for two-dimensional intensities, estimated from the incomplete

data, are

λ̃T (s) = {φ(s)}−1
n
∑

i=1

i∈G

Kh(s − si)

and

λ̂T (s) =
n
∑

i=1

i∈G

{φ(si)}
−1Kh(s − si). (7)

Upon comparison with (1), it is evident that both estimators inflate the complete-data

kernel intensity estimator according to the incompleteness of the geocoding, but differ in

respect to the order in which the inflation and smoothing are performed. As a consequence

of this difference, their statistical properties are different; indeed, it follows from Jones’

results for density estimators that λ̂T (·) has smaller asymptotic integrated mean squared

error than λ̃T (·). Furthermore, λ̂T (·) is continuous even if φ(·) is discontinuous [provided
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K(·) is continuous], while λ̃T (·) is not. Therefore, only λ̂T (·) is considered in what follows.

Actually, since φ(·) is generally unknown in practice, λ̂T (s) cannot be calculated from the

data. Therefore, I propose that a model be specified for φ(·), that this model be estimated

using the coarsened data, and that the resulting estimate be substituted into (7) to yield the

coarsened-data estimator

λ̂C(s) =
n
∑

i=1

i∈G

{φ̂(si)}
−1Kh(s − si). (8)

If Kh(·) is taken to be Gaussian, λ̂C(·) can be computed easily using the function density.ppp

in the spatstat library of R (Version 1.9-1, webpage www.spatstat.org).

How might a model for φ(·) be specified? An extremely simple model could be based

on a dichotomous rural-urban classification of zip codes. Suppose that each zip code in the

geographic region under study can be classified as either rural or urban, and suppose we

agree to say that a point s is “rural” or “urban” according to whether it lies in a rural or

urban zip code. Suppose further that a case occurring in a rural zip code is geocoded with

probability φR, while a case occurring in an urban zip code is geocoded with probability

φU (where 0 < φR, φU ≤ 1); that is, φ(s) = φR if s is rural, and φ(s) = φU if s is urban.

Based on the aforementioned literature comparing rural and urban geocoding propensities,

we would expect that φR < φU , but this is not required. Then, (8) can be expressed as

λ̂C(s) =
n
∑

i=1

i∈R

φ̂−1
R Kh(s − si) +

n
∑

i=1

i∈U

φ̂−1
U Kh(s − si)

where {R,U} is the partition of G into subsets of rural and urban zip codes, φ̂R is the observed

proportion of cases in rural zip codes that geocode, and φ̂U is the observed proportion of

cases in urban zip codes that geocode.

The model specification just described for a dichotomous urban-rural classification can

be extended easily for a polytomous classification such as the United States Department
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of Agriculture’s rural-urban continuum code, which classifies counties into nine categories

on the basis of metropolitan status, size of urban and rural population, and proximity to

metropolitan areas (USDA, 2004). For a point s lying in an areal unit belonging to the

jth of J categories, merely let φ(s) = φj and then take λ̂C(s) =
∑J

j=1

∑n
i=1

i∈Gj

φ̂−1
j Kh(s − si)

where {G1, . . . ,GJ} partitions G and φ̂j is the observed proportion of cases in category j that

geocode. (If no cases in category j geocode, then categories can be combined or some other

fix-up, such as adding 1.0 to the numerator and denominator of the observed proportion,

can be used.)

Specifications of the geocoding propensity function based on discrete classifications of

rurality do not explicitly account for the aforementioned monotonicity (and relative smooth-

ness) of the propensity’s relationship with population size or density. As an alternative to

assigning geocoding probabilities on the basis of a discrete urban-rural classification, one

could consider taking the geocoding propensity to be a monotone, continuous function of

the background population density. A natural, parsimonious choice for this function would

be the logistic function

φ(s) =
1

1 + exp{−γ0 − γ1ν(s)}
, (9)

where ν(s) represents the background population density at s. For this model, the logit

of the geocoding propensity is a linear function of population density, but alternatively a

quadratic function or any other function that is linear in its parameters on the logit scale is

permissible. If the propensity function is given by (9), then (8) becomes

λ̂C(s) =
n
∑

i=1

i∈G

[1 + exp{−γ̂0 − γ̂1ν(si)}]Kh(s − si). (10)

Here, ν(si) could be approximated by the population density over the zip code (or other

areal unit) to which si belongs, and γ0 and γ1 may be estimated from a standard logistic

regression of the gi on the approximated ν(si). Note that in the U.S., zip code densities can
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be approximated using population and area information available for Zip Code Tabulation

Areas (ZCTAs), though the cautionary note of Krieger et al. (2002) should be heeded.

A small simulation study was conducted to investigate the performance of λ̂C(·) under

this logistic specification. One thousand realizations of a Poisson process with intensity

λ(u, v) = exp(θ0 + θ1u + θ2v) were generated on the unit square D = [0, 1] × [0, 1], where

θ1 = 1, θ2 = 2, and θ0 was chosen so that the expected number of events realized in

D was either 100 or 500. From each such complete dataset, two derived datasets were

constructed. The first, the incomplete dataset, was obtained by φ(s)-thinning the complete

dataset (mimicking incomplete geocoding) using a logistic propensity function φ(u, v) = [1+

exp{−γ0 − γ1ν(u, v)}]−1, where γ0 = −λ(0, 0)/E{N(D)}, γ1 = 1/E{N(D)}, and ν(u, v) =

λ(u, v). Note that φ(u, v) increases in both u and v, φ(0, 0) = 0.5, φ(1, 1)
.
= 0.97, and the

average overall geocoding success rate is approximately 75%. The second derived dataset,

the coarsened data, was obtained by determining an enclosing areal unit for each event that

was deleted from the complete data and then appending these areal-level measurements

to the incomplete data. Areal units were defined by partitioning D into a 5 × 5 grid of

squares of side 0.2. Then, ν(ui, vi) was approximated by the integral of λ(u, v) over the areal

unit containing (ui, vi), and the coarsened data were used to fit model (9) to the observed

geocoding proportions within areal units by logistic regression. Thus was λ̂C(·), as given

by (10), obtained. For comparison, standard kernel intensity estimates λ̂(·) and λ̂T (·) based

on the complete data and incomplete data, respectively, were also obtained. No attempt

to optimize bandwidth iteratively was made; rather, bandwidths close to those specified by

the Normal reference rule (Scott, 1992, p. 152) were used [0.15 when E(N) = 100 and 0.10

when E(N) = 500]. The overall quality of each estimator was measured by evaluating it on

the 100 × 100 grid H = {0.005, 0.015, . . . , 0.995}2 and calculating its empirical average bias

and average mean squared error (MSE), defined for λ̂C(·) by 10−7∑1000
k=1

∑

(u,v)∈H{λ̂
(k)
C (u, v)−
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λ(u, v)} and 10−7∑1000
k=1

∑

(u,v)∈H{λ̂
(k)
C (u, v)−λ(u, v)}2, respectively, and defined similarly for

the other two estimators. Here, λ̂
(k)
C (·) is the coarsened-data estimator of λ(·) for the kth

Poisson realization. Results, given in Table 1a, reveal that the incomplete-data estimator

is badly geographically biased, while any geographic bias in the coarsened-data estimator

appears negligible. The results also show that although the average MSE of the coarsened-

data estimator is 15-20% larger than that of the complete-data estimator, it is substantially

smaller than the average MSE of the incomplete-data estimator.

To illustrate the plausibility of a logistic specification of geocoding propensity in a real

setting, we examine some results obtained by Kravets and Hadden (2006) in an analysis

of data from the National Health Interview Survey (NHIS), taken from 1995 through 2001.

Addresses for a subset of 252,421 households — 89% of all households in the survey — which

(a) resided in housing units built before 1990 and (b) were located in 1990 Census blockgroups

that could be unambiguously assigned to a 2000 blockgroup using published Census block

relationship files were submitted to a commercially available geocoding program, and the

proportion of addresses to which the program could assign a blockgroup was determined.

Kravets and Hadden list these proportions by the USDA urban-rural continuum code for

the enclosing county; the same results are summarized in Table 2 in a slightly reduced

fashion, using only the population size. More specifically, those codes that have the same

population range are pooled, which results in six population size categories: ≥ 1 million,

250,000-999,999, 50,000-249,999, 20,000-49,999, 2,500-19,999, and <2,500. The proportions

of addresses in these categories that geocoded, shown in the rightmost column of Table 2,

clearly indicate that the geocoding propensity tends to increase with population size. In fact,

a plot of the log of these proportions versus the log population size (Figure 1) appears quite

linear, which suggests fitting a logistic regression model of propensity on log population size,

i.e., log[φ(s)/{1 − φ(s)}] = γ0 + γ1 log{ν(s)}. Such a model was fitted by standard logistic
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regression methods (using half the upper limit of each population category as a proxy for

the population size except for the largest category, for which 2 million was the proxy) and

is drawn on Figure 1.

Although a model that is linear in its parameters on the logit scale provides a good fit to

the observed NHIS geocoded proportions, this may not always be so. Therefore, it is worth

noting that an even more general way to model the dependence of the geocoding propensity

on population density is to assume only that φ(s) = (1+exp[−γ0−f{ν(s)}])−1 where f(·) is

an unspecified smooth function. The φ(si) may be estimated using the fitted nonparametric

logistic regression of the gi on the ν(si). An excellent description of nonparametric logistic

regression, including relevant computational algorithms, is given by Herman and Hastie

(1990).

3.2 Likelihood-based estimation

Now suppose that the process is Poisson, with intensity function belonging to a parametric

family {λ(s; θ) : θ ∈ Θ}, and we wish to estimate θ by maximum likelihood. Recall that

the complete-data likelihood function is proportional to (2). Inferences made using the

incomplete-data likelihood [given by an expression similar to (2) but with the product taken

over only those observations that geocoded] will be equivalent to inferences based on (2)

only if the missing geocodes are missing are random, which requires, unrealistically, that

the geocoding propensity be constant over the entire region of interest (i.e. no geographic

bias). However, inferences that are valid under a much weaker assumption on the geocoding

propensity function can be based on a likelihood that accounts for the coarsened locational

data, as I now describe.

Under the assumed model, the pairs of complete data locations and their enclosing zip

codes {(si, Zi) : i = 1, . . . , n} are independent. The finest-resolution location actually ob-
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served for the ith datum, however, is generally not si but

Xi =











si if gi = 1

Zi if gi = 0.

Suppose that G(s1), . . . , G(sn) are independent Bernoulli random variables, with success

(geocoding) probabilities modeled parametrically as φ(s1; γ), . . . , φ(sn; γ) respectively; for

example, φ(s; γ) could be specified by (9). Following the general development laid out by

Heitjan (1993), the coarsened-data likelihood is proportional to

LC(θ, γ; X1, . . . , Xn) = exp
{

−
∫

D
λ(s; θ) ds

}







∏

i∈G

φ(si; γ)λ(si; θ)







×







∏

i/∈G

∫

Zi

[1 − φ(s; γ)]λ(s; θ) ds







.

This is in contrast to the likelihood that ignores the randomness of the coarsening, which is

proportional to

LIG(θ; X1, . . . , Xn) = exp
{

−
∫

D
λ(s; θ) ds

}







∏

i∈G

λ(si; θ)













∏

i/∈G

∫

Zi

λ(s; θ) ds







.

Inference for θ based on the more convenient LIG is equivalent to inference based on LC if the

data are coarsened at random and the parameters θ and γ are distinct (in the sense that the

joint parameter space of (θ′, γ ′)′ is the product of the parameter spaces for θ and γ) (Heitjan

and Rubin, 1991). It is easily verified that the locations are coarsened at random if φ(s; γ)

is constant over each individual zip code, as was assumed for each of the models described

in section 3.1 [provided that ν(s) in model (9) is approximated by the population density of

the enclosing zip code]. Thus, for these models the possible equivalence of inferences based

on LC and LIG depends on whether θ and γ are distinct. A scenario in which θ and γ are

indistinct occurs if one does not estimate zip code population densities exogenously (using,

15



e.g., ZCTA information) for model (9), but instead assumes that ν(s) = κλ(s; θ) for some

proportionality constant κ and therefore replaces ν(s) in (9) with λ(s; θ). In most practical

situations, however, θ and γ are distinct and thus valid inferences can be made using LIG.

R code for maximizing LIG (and for maximizing the conditional likelihood L∗
IG introduced

in section 4.2) is available from the author upon request.

In order to investigate the performance of the MLE based on LC , a second simulation

study, rather similar to the first, was carried out. The same 1000 complete, 1000 incomplete,

and 1000 coarsened data sets from the previous study were used, but this time the parameter

θ = (θ0, θ1, θ2)
′ was estimated by a maximum likelihood procedure. Specifically, MLEs were

obtained by maximizing: (a) L using the complete data, (b) the incomplete-data likelihood

using the incomplete data, and (c) LC using the coarsened data; denote these MLEs by

θ̂, θ̂T , and θ̂C respectively. For the geocoding propensity functions used here, the data are

coarsened at random; moreover, ν(ui, vi) was approximated exogeneously as before, hence θ̂C

could be obtained by maximizing LIG rather than LC . The empirical bias and mean squared

error of each estimator, averaged over the 1000 simulations, are given in Table 1b. These

results clearly demonstrate that the coarsened-data MLEs are virtually free of geographic

bias and, in terms of MSE, perform much better than the incomplete-data MLEs (and nearly

as well as the complete-data MLEs).

4 Relative Risk Estimation from Coarsened Locations

In this section I consider how the coarsened data could be used to improve inferences for

relative risk. For the sake of brevity, only analytical results are presented; empirical results

resemble those given in sections 3.1 and 3.2. For each s ∈ D, let G(s) be the geocoding

indicator variable defined by (5), but now define separate geocoding propensity functions
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for cases and controls, as follows: φ1(s) = P{G(s) = 1 | the event at s is a case}, φ0(s) =

P{G(s) = 1 | the event at s is a control}, both assumed positive over D. Then the intensity

functions for the thinned processes associated with the incompletely geocoded cases and

controls are, respectively,

λT1(s) = φ1(s)λ1(s) and λT0(s) = φ0(s)λ0(s). (11)

If either pre-thinned process is Poisson then so is the corresponding thinned process.

4.1 Nonparametric estimation

Recall the definition of the complete-data log relative risk function, ρ(s) = log{λ1(s)/λ0(s)}.

Using (11), the log relative risk function for the incomplete data is

ρT (s) ≡ log{λT1(s)/λT0(s)} = ρ(s) + log{φ1(s)/φ0(s)}.

Thus, ρT (·) and ρ(·) have the same spatial variation if and only if φ1(s) = kφ0(s) for some k.

Under this condition, the spatial variation in the complete-data log relative risk function can

be estimated from the incompletely geocoded data without adjustment. If proportionality

of the propensity functions cannot reasonably be assumed, however, then I suggest that

the coarsened information be used to estimate the propensity functions and corresponding

intensities in the manner described in section 3.1, yielding estimates λ̂C1(·) and λ̂C0(·), and

that the complete-data log relative risk function then be estimated by

ρ̂C(s) = log

(

λ̂C1(s)

λ̂C0(s)

)

. (12)

How likely, in practice, are the two geocoding propensity functions to be proportional to

each other? Ideally, an investigator’s protocol for geocoding controls will be identical (same

vendor, software, etc.) to that used for geocoding cases, in which case it may be reasonable to
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assume that the functions are not merely proportional but equal. Somewhat less restrictively,

if the same general method is used for geocoding cases and controls but certain aspects of

it are different, for example different vendors or address matching criteria are used, then

proportionality may be plausible even if equality is not. Sometimes, practical realities make

it infeasible to use even the same geocoding technology for cases and controls; it is for these

situations especially that estimation by (12) is advisable. For example, in some studies, cases

may be geocoded using GPS transmitters (especially, for example, if visits to cases’ homes

for interviews or measurements of ambient pollution levels are required), whereas controls,

which are often randomly sampled from address lists, are more likely to be geocoded by

standard street segment matching and interpolation software.

In any case, the available counts, for each zip code, of cases and controls that geocode

or fail to geocode can be used to formally test for proportionality or for, more precisely, a

coarsened version of proportionality given by H0 : φ̄1i = kφ̄0i for all i, k arbitrary. Here

φ̄1i = |Zi|
−1
∫

Zi
φ1(s)ds and φ̄0i = |Zi|

−1
∫

Zi
φ0(s)ds for i = 1, . . . , q, where q is the number

of distinct zip codes. This hypothesis can be re-expressed as H0 : C log φ̄ ∈ C(1q) where

φ̄ = (φ̄11, φ̄12, . . . , φ̄0q)
′

, C = (Iq,−Iq), Iq is the q × q identity matrix, and C(1q) is the space

spanned by a q × 1 vector of ones. As such, it is seen to be of the “homogeneous linear

predictor form” described by Lang (2005), and the likelihood ratio test of H0 versus an unre-

stricted alternative can easily be tested using Joseph Lang’s program mph.fit available from

www.stat.uiowa.edu/∼jblang/mph.fitting/mph.fit.documentation.htm. A coarsened

version of the hypothesis of equal propensities can be tested similarly.

4.2 Conditional likelihood-based estimation

Now assume that cases and controls arise from independent Poisson processes, and consider

how to generalize the conditional likelihood approach summarized in section 2 when locations
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are coarsened due to incomplete geocoding. Recall that the likelihood associated with the

binary random variables Yi, conditional on the complete-data superposition s1, . . . , sn1+n0

of cases and controls, is given by (4). When locations are coarsened, however, we cannot

condition on the complete-data superposition but must instead condition on the coarsened su-

perposition X1, . . . , Xn1+n0
and the associated geocoding indicator variables G1, . . . , Gn1+n0

,

where Xi and Gi are defined as in section 3.2 but for the superposition of cases and controls.

So conditioned, the Yi are independent Bernoulli with

P (Yi = 1|Xi = si, Gi = 1) =
φ1(si)λ1(si)

φ0(si)λ0(si) + φ1(si)λ1(si)

and

P (Yi = 1|Xi = Zi, Gi = 0) =

∫

Zi
{1 − φ1(s)}λ1(s) ds

∫

Zi
[{1 − φ0(s)}λ0(s) + {1 − φ1(s)}λ1(s)] ds

.

Thus, if the multiplicative relationship between case and control intensities given by (3) is

assumed, the conditional likelihood function is proportional to

L∗
C(θ, α, γ; Y1, . . . , Yn1+n0

) =















n1
∏

i=1

i∈G

φ1(si; γ)αξ(si; θ)

φ0(si; γ) + φ1(si; γ)αξ(si; θ)















×















n1+n0
∏

i=n1+1

i∈G

φ0(si; γ)

φ0(si; γ) + φ1(si; γ)αξ(si; θ)















×















n1
∏

i=1

i/∈G

∫

Zi
{1 − φ1(s; γ)}αξ(s; θ)λ0(s) ds

∫

Zi
[{1 − φ0(s; γ)} + {1 − φ1(s; γ)}αξ(s; θ)]λ0(s) ds















×















n1+n0
∏

i=n1+1

i/∈G

∫

Zi
{1 − φ0(s; γ)}λ0(s) ds

∫

Zi
[{1 − φ0(s; γ)} + {1 − φ1(s; γ)}αξ(s; θ)]λ0(s) ds















.

There are two major difficulties associated with inference based on L∗
C , relative to inference

in the complete-data case: (1) models for the two geocoding propensity functions must be
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specified; (2) λ0(s) must be specified, as the conditioning does not eliminate it. However,

these difficulties can be circumvented under certain conditions. For example, if locations are

coarsened at random and the geocoding propensities for cases and controls are equal, then

L∗
C reduces to

L∗
IG(θ, α; Y1, . . . , Yn1+n0

) =















n1
∏

i=1

i∈G

αξ(si; θ)

1 + αξ(si; θ)





























n1+n0
∏

i=n1+1

i∈G

1

1 + αξ(si; θ)















×















n1
∏

i=1

i/∈G

∫

Zi
αξ(s; θ)λ0(s) ds

∫

Zi
{1 + αξ(s; θ)}λ0(s) ds





























n1+n0
∏

i=n1+1

i/∈G

∫

Zi
λ0(s) ds

∫

Zi
{1 + αξ(s; θ)}λ0(s) ds















,

the conditional likelihood that ignores the randomness of the coarsening. Moreover, λ0(·)

can be eliminated from L∗
C and L∗

IG if it is assumed to be constant over each zip code.

5 Discussion

This article has motivated and developed coarsened-data methodology for estimating the

intensity and variation in relative risk of spatial point processes from incompletely geocoded

data. A coarsened-data analysis has one major disadvantage and two important advan-

tages compared to an incomplete-data analysis. The disadvantage is its greater complexity;

geocoding propensity functions need to be specified and estimated, and (in the case of

likelihood-based estimation) integrals of various functions must be evaluated (either ana-

lytically or numerically) over areal units. The compelling advantage of a coarsened-data

analysis is that it is often much less biased than the incomplete-data analysis when ge-

ographic bias exists; exceptions can occur for the estimation of relative risk, but only if

the geocoding propensities for cases and controls are equal (likelihood-based estimation) or

proportional (nonparametric estimation), in which case the incomplete-data analysis is un-
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affected by geographic bias. A second advantage is that in the absence of geographic bias,

the coarsened-data analysis can be more efficient. The coarsened likelihood-based methods

(both unconditional and conditional) proposed here enjoy this greater efficiency while the

nonparametric methods do not, owing to their indirect utilization of the coarsened data.

That is, for purposes of nonparametric estimation the coarsened data were used only to es-

timate the geocoding propensity function(s) and then this estimate was substituted for the

true propensity in a propensity-weighted kernel intensity estimator. Alternatively, it may be

possible to utilize the coarsened information more directly in kernel intensity estimation by

extending the kernel density estimation method of Braun, Duchesne, and Stafford (2005) for

interval-censored (including binned) one-dimensional data to two dimensions. Such a direct

method would likely be more efficient than the indirect method proposed here.

The analytic methods on which our attention was focused, namely intensity and relative

risk estimation, pertain to first-order properties of point processes. The impact of incom-

plete geocoding on second-order properties, such as the K-function, may also be of interest.

Unfortunately, there is not a simple relationship between the K-function of a spatial point

process and that of the corresponding φ(s)-thinned process, as there is for the intensities

and relative risk functions. An exception occurs if φ(s) is constant, in which case the two

K-functions coincide. Thus, in the absence of geographic bias, inferences from the incom-

plete data based on the K-function are valid, but further research is needed on estimating

the K-function when geographic bias is present.

A completely different approach for using coarsened geographic information to deal with

incomplete geocoding would be to impute point locations within enclosing areal units for

the events that do not geocode, analogous to the method that Heeringa, Little, and Raghu-

nathan (2002) use to impute coarsened financial survey data. For example, the general

method of mean imputation would correspond to imputing an address that fails to geocode
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by the centroid of all the geocoded events within the same areal unit as the address, and

the common technique of hot deck imputation would amount to imputing an address by a

randomly selected event observed in the same areal unit. Implementations of these and other

imputation methods for missing geocodes are currently under investigation.
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Table 1: Empirical Bias and MSE of Intensity Estimators Based on Complete Data, Incom-

plete Data, and Coarsened Data. Estimated standard errors for bias estimates in part (a) are

approximately 0.3 and 0.7 when E(N) = 100 and E(N) = 500, respectively, and in part (b)

they are approximately 0.005 and 0.012 when E(N) = 100 and E(N) = 500, respectively.

(a) Kernel estimation

Average Bias Average MSE

Estimator E(N) = 100 E(N) = 500 E(N) = 100 E(N) = 500

λ̂ -1.4 -3.1 737 6.9 × 103

λ̂T -26.6 -128.6 1361 23.1 × 103

λ̂C -1.5 -3.7 860 8.3 × 103

(b) Maximum likelihood estimation

Bias MSE

Estimator E(N) = 100 E(N) = 500 E(N) = 100 E(N) = 500

θ̂0 -0.053 0.002 0.1341 0.0230

θ̂T0 -0.909 -0.822 1.0327 0.7123

θ̂C0 -0.071 0.016 0.1398 0.0237

θ̂1 0.024 -0.001 0.1393 0.0237

θ̂T1 0.327 0.276 0.3076 0.1088

θ̂C1 0.033 0.008 0.1418 0.0241

θ̂2 0.032 -0.007 0.1571 0.0286

θ̂T2 0.594 0.546 0.5719 0.3389

θ̂C2 0.050 0.012 0.1635 0.0292

26



Table 2: Proportion of NHIS Addresses that Geocoded by Population Size Category.

Population size Number of counties Number of households Percent geocoded

≥ 1 million 300 138,281 95.1

250,000-999,999 194 48,992 90.4

50,000-249,999 106 23,379 84.8

20,000-49,999 76 17,625 78.1

2,500-19,999 110 19,805 64.4

< 2,500 48 4,339 43.7
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Figure 1: Plot of logit transform of the geocoding propensity versus the natural logarithm

of county population size, for the NHIS data.
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